

心於至善

Control of Smart Transformerfed Grid

Presenter: Dr. Zhixiang Zou

Email: zzou@seu.edu.cn

Christian-Albrechts-Universität zu Kiel

- Control of Smart Transformer (ST) and its challenges
- Analysis and stabilization of ST-fed grid
- Influences of grid synchronization on ST-fed grid
- Conclusions

Control of Smart Transformer and its challenges

南京 四牌楼2号 http://ee.seu.edu.cn

The Smart Transformer

The Smart Transformer features shall be:

- LV and MV dc-links available
- Advanced control of all the three-stages
- The system should be able to work even with faulty modules
- During partial loading conditions it should be able to fully use its rating for other services

Control of Smart Transformer

SCHOOL OF ELECTRICAL ENGINEERING, SE

Challenges of ST LV Control

Challenges of ST LV Control

Control issues for ST-fed grid:

- Control interactions and instability;
- Resonance and power quality violation;
- Stability issues associated with PLL;
- Power quality violation during frequency control.

Analysis and Stabilization of ST-fed Grid

南京 四牌楼2号 http://ee.seu.edu.cn

Interactions between ST and LV Grid

 Z_o : output impedance of LV converter Z_{in} : input impedance of LV grid

- System stability is determined by $T_m = Z_o / Z_{in}$;
- If $|Z_{in}| >> |Z_o|$ for all frequencies, the effect of LV grid is negligible, the system stability will depend on the stability of LV converter;
- In an actual grid, due to the utilization of ,,plug-and-play" devices (e.g., grid converters), $|Z_{in}| \gg |Z_o|$ is not always valid.

Impacts of High-order Filter

- Shunt-connected passive loads can alleviate resonant peak;
- In case of light load, the high-order filters (e.g., LCL filter) can compromise system stability.

• In case of heavy load, the pair of dominant poles move towards the imaginary axis with the increasing of grid converters;

南京 四牌楼2号 http://ee.seu.edu.cn

10

• In case of light loads, the pair of poles shift leftwards when converters increase.

Z. Zou, G. Buticchi and M. Liserre, "Grid identification and adaptive voltage control in a smart transformer-fed grid," *IEEE Transactions on Power Electronics*, vol. 34, no. 3, pp. 2327-2338, March 2019.

Stabilization Approaches

Z. Zou, G. Buticchi and M. Liserre, "Grid identification and adaptive voltage control in a smart transformer-fed grid," *IEEE Transactions on Power Electronics*, vol. 34, no. 3, pp. 2327-2338, March 2019.

東南大學電氣工程學院

Z. Zou, G. Buticchi and M. Liserre, "Analysis and stabilization of a smart transformer-fed grid," IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1325-1335, Feb. 2018.

東南大學電氣工程學院

Resonance Identification

- Mono-frequency excitation ranging from 150 Hz to 1500 Hz is implemented together with voltage control and active damping;
- By using time-domain data, the transfer function of impedance can be obtained by **vector** *fitting* method.

Z. Zou, G. Buticchi and M. Liserre, "Grid identification and adaptive voltage control in a smart transformer-fed grid," *IEEE Transactions on Power Electronics*, vol. 34, no. 3, pp. 2327-2338, March 2019.

Experimental Results

Z. Zou, G. Buticchi and M. Liserre, "Analysis and stabilization of a smart transformer-fed grid," *IEEE Transactions on Industrial Electronics*, vol. 65, no. 2, pp. 1325-1335, Feb. 2018.

Influence of Synchronization on ST-fed Grid

南京 四牌楼2号 http://ee.seu.edu.cn

Quasistationary behaviors of PLL

- SRF-PLL is one of the most extended synchronization
- During phase perturbation, the PLL exhibits oscillatory behaviors
- Converter current and power would be oscillatory during disturbance

Z. Zou, R. Rosso and M. Liserre, "Modeling of the Phase Detector of a Synchronous-Reference-Frame Phase-Locked Loop based on Second-Order Approximation," *IEEE Journal of Emerging and Selected Topics in Power Electronics*, vol. 8, no. 3, pp. 2534-2545, Sept. 2020. 東南大噪電氯工程 學院

Park transform:

$$\mathbf{\Gamma}(\theta') = \begin{bmatrix} \cos\Delta\theta' & \sin\Delta\theta' \\ -\sin\Delta\theta' & \cos\Delta\theta' \end{bmatrix} \mathbf{T}(\theta_0)$$

During small phase perturbation (<7 deg):

5

$$\begin{bmatrix} 1 & \Delta \theta' \\ -\Delta \theta' & 1 \end{bmatrix}$$
 Small-angle approximation

During large phase perturbation:

$$\begin{bmatrix}\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (\Delta \theta')^{2n} & \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (\Delta \theta')^{2n+1} \\ -\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (\Delta \theta')^{2n+1} & \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (\Delta \theta')^{2n} \end{bmatrix}$$
Large-angle approximation (Maclaurin expansions)

Z. Zou and M. Liserre, "Modeling Phase-locked Loop-based Synchronization in Grid-interfaced Converters," IEEE Transactions on Energy Conversion, vol. 35, no. 1, pp. 394-404, 2020. 東南大學電氣工程學院 南京四牌楼2号 http://ee.seu.edu.cn 17

More Accurate Model of Grid Converter

PLL-synchronized converter

東南大學電氣工程學院

Average model:

$$\begin{bmatrix} L_f s & -\omega L_f \\ \omega L_f & L_f s \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} = G_d \begin{bmatrix} v_{rd} \\ v_{rq} \end{bmatrix} - \begin{bmatrix} v_d \\ v_q \end{bmatrix}$$

Updating model with second-order terms:

Grid current:

Grid voltage: $\begin{bmatrix} v'_d \\ v'_q \end{bmatrix} = \begin{bmatrix} \frac{2-\Delta\theta'^2}{2} & \Delta\theta' \\ -\Delta\theta' & \frac{2-\Delta\theta'^2}{2} \end{bmatrix} \begin{bmatrix} v_d \\ v_q \end{bmatrix}$ $\begin{bmatrix} \Delta i_d \\ \Delta i_d \end{bmatrix} = \begin{bmatrix} \Delta i'_d \\ \Delta i'_d \end{bmatrix} + \begin{bmatrix} -I_q \\ I_d \end{bmatrix} \Delta \theta' + \begin{bmatrix} -\frac{1}{2}I_d \\ -\frac{1}{2}I_d \end{bmatrix} \Delta \theta'^2$

Voltage reference:

$$\begin{bmatrix} \Delta v_{rd} \\ \Delta v_{rq} \end{bmatrix} = \begin{bmatrix} \Delta v'_{rd} \\ \Delta v'_{rq} \end{bmatrix} + \begin{bmatrix} -V'_{rq} \\ V'_{rd} \end{bmatrix} \Delta \theta' + \begin{bmatrix} -\frac{1}{2}V'_{rd} \\ -\frac{1}{2}V'_{rq} \end{bmatrix} \Delta \theta'^2$$

Zou and M. Liserre, "Modeling Phase-locked Loop-based Synchronization in Grid-interfaced Converters," IEEE Transactions on Energy Conversion, vol. 35, no. 1, pp. 394-404, 2020.

Compete model of PLL-synchronized grid converter (second-order):

 $\begin{bmatrix} \Delta i_d \\ \Delta i_q \end{bmatrix} = \begin{bmatrix} Y_{dd} & 0 \\ 0 & Y_{qq} \end{bmatrix} \begin{bmatrix} \Delta v_d \\ \Delta v_q \end{bmatrix} + \begin{bmatrix} I_{dd} & 0 \\ 0 & I_{qq} \end{bmatrix} \begin{bmatrix} \Delta i_{dref} \\ \Delta i_{qref} \end{bmatrix} + \begin{bmatrix} \Theta_{d1} \\ \Theta_{q1} \end{bmatrix} G_{PLL_cl} \Delta \theta + \begin{bmatrix} \Theta_{d2} \\ \Theta_{q2} \end{bmatrix} (G_{PLL_cl})^2 (\Delta \theta)^2$

Accuracy	Problem	Grid condition	Modeling type
Α	Transient stability	Weak grid with large phase pertutbation	Impedance-based model with higher-order PLL terms
В	Harmonic stability using	Weak grid (SCR < 3)	Impedance-based model with first-order PLL terms
С	small-signal analysis	Strong grid (SCR > 10)	Impedance-based model
D	Linear analysis	Strong grid (SCR > 10)	Current source model
Е	Scheduling and optimization	Stiff grid	Phasorial model

- Each model can reveal certain phenomenon, though has limitation
- The model deepness has to be decided depending on the studied problems and required accuracy.

Z. Zou and M. Liserre, "Modeling Phase-locked Loop-based Synchronization in Grid-interfaced Converters," *IEEE Transactions on Energy Conversion*, vol. 35, no. 1, pp. 394-404, 2020.

 $\begin{bmatrix} \Delta i_d \\ \Delta i_q \end{bmatrix} = \begin{bmatrix} Y_{dd} & 0 \\ 0 & Y_{qq} \end{bmatrix} \begin{bmatrix} \Delta v_d \\ \Delta v_q \end{bmatrix} + \begin{bmatrix} I_{dd} & 0 \\ 0 & I_{qq} \end{bmatrix} \begin{bmatrix} \Delta i_{dref} \\ \Delta i_{qref} \end{bmatrix} + \begin{bmatrix} \Theta_{d1} \\ \Theta_{q1} \end{bmatrix} G_{PLL_cl} \Delta \theta + \begin{bmatrix} \Theta_{d2} \\ \Theta_{q2} \end{bmatrix} (G_{PLL_cl})^2 (\Delta \theta)^2$

Compete model of PLL-synchronized grid converter (second-order):

Problem Grid condition Modeling type Accuracy Impedance-based model with Weak grid with large phase Transient stability Α pertutbation higher-order PLL terms Impedance-based model with B Weak grid (SCR < 3) first-order PLL terms Harmonic stability using small-signal analysis С Strong grid (SCR > 10) Impedance-based model D Linear analysis Strong grid (SCR > 10) Current source model E Phasorial model Scheduling and optimization Stiff grid

東南大學電氣工程學院

南京 四牌楼2号 http://ee.seu.edu.cn

PIC

Compete model of PLL-synchronized grid converter (second-order):

	Accuracy	Problem		Grid co	ondition	
$\begin{bmatrix} \Delta i_d \\ \Delta i_q \end{bmatrix} = \begin{bmatrix} Y_{dd} \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ Y_{qq} \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	$\begin{bmatrix} \Delta v_d \\ \Delta v_q \end{bmatrix} + \begin{bmatrix} I_{dd} \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ I_{qq} \end{bmatrix}$	$\begin{bmatrix} \Delta i_{dref} \\ \Delta i_{qref} \end{bmatrix}$	$+ \begin{bmatrix} \Theta_{d1} \\ \Theta_{q1} \end{bmatrix}$	G_1

$dref_{qref}$	+	$\begin{bmatrix} \Theta_{d1} \\ \Theta_{q1} \end{bmatrix}$	$G_{PLL_cl}\Delta\theta$	$+\begin{bmatrix}\Theta_{d2}\\\Theta_{q2}\end{bmatrix}$	$(G_{PLL_cl})^2 (\Delta \theta)^2$
---------------	---	--	---------------------------	---	-------------------------------------

Accuracy	Problem	Grid condition	Modeling type
А	Transient stability	Weak grid with large phase pertutbation	Impedance-based model with higher-order PLL terms
В	Harmonic stability using	Weak grid (SCR < 3)	Impedance-based model with first-order PLL terms
С	small-signal analysis	Strong grid (SCR > 10)	Impedance-based model
D	Linear analysis	Strong grid (SCR > 10)	Current source model
E	Scheduling and optimization	Stiff grid	Phasorial model

南京 四牌楼2号 http://ee.seu.edu.cn

 $\begin{bmatrix} \Delta i_d \\ \Delta i_q \end{bmatrix} = \begin{bmatrix} Y_{dd} & 0 \\ 0 & Y_{qq} \end{bmatrix} \begin{bmatrix} \Delta v_d \\ \Delta v_q \end{bmatrix} + \begin{bmatrix} I_{dd} & 0 \\ 0 & I_{qq} \end{bmatrix} \begin{bmatrix} \Delta i_{dref} \\ \Delta i_{gref} \end{bmatrix} + \begin{bmatrix} \Theta_{d1} \\ \Theta_{q1} \end{bmatrix} G_{PLL_cl} \Delta \theta + \begin{bmatrix} \Theta_{d2} \\ \Theta_{q2} \end{bmatrix} (G_{PLL_cl})^2 (\Delta \theta)^2$

Compete model of PLL-synchronized grid converter (second-order):

Problem Grid condition Modeling type Accuracy Impedance-based model with Weak grid with large phase Transient stability Α pertutbation higher-order PLL terms Impedance-based model with B Weak grid (SCR < 3) first-order PLL terms Harmonic stability using small-signal analysis С Strong grid (SCR > 10) Impedance-based model D Linear analysis Strong grid (SCR > 10) Current source model E Phasorial model Scheduling and optimization Stiff grid

南京 四牌楼2号 http://ee.seu.edu.cn

 $\begin{bmatrix} \Delta i_d \\ \Delta i_q \end{bmatrix} = \begin{bmatrix} Y_{dd} & 0 \\ 0 & Y_{qq} \end{bmatrix} \begin{bmatrix} \Delta v_d \\ \Delta v_q \end{bmatrix} + \begin{bmatrix} I_{dd} & 0 \\ 0 & I_{qq} \end{bmatrix} \begin{bmatrix} \Delta i_{dref} \\ \Delta i_{qref} \end{bmatrix} + \begin{bmatrix} \Theta_{d1} \\ \Theta_{q1} \end{bmatrix} G_{PLL_cl} \Delta \theta + \begin{bmatrix} \Theta_{d2} \\ \Theta_{q2} \end{bmatrix} (G_{PLL_cl})^2 (\Delta \theta)^2$

Compete model of PLL-synchronized grid converter (second-order):

Problem Grid condition Modeling type Accuracy Impedance-based model with Weak grid with large phase Transient stability Α pertutbation higher-order PLL terms Impedance-based model with B Weak grid (SCR < 3) first-order PLL terms Harmonic stability using small-signal analysis С Strong grid (SCR > 10) Impedance-based model D Linear analysis Strong grid (SCR > 10) Current source model E Phasorial model Scheduling and optimization Stiff grid

南京 四牌楼2号 http://ee.seu.edu.cn

 $\begin{vmatrix} \Delta i_d \\ \Delta i_q \end{vmatrix} = \begin{vmatrix} Y_{dd} & 0 \\ 0 & Y_{qq} \end{vmatrix} \begin{vmatrix} \Delta v_d \\ \Delta v_q \end{vmatrix} + \begin{vmatrix} I_{dd} & 0 \\ 0 & I_{qq} \end{vmatrix} \begin{vmatrix} \Delta i_{dref} \\ \Delta i_{qref} \end{vmatrix} + \begin{vmatrix} \Theta_{d1} \\ \Theta_{q1} \end{vmatrix} G_{PLL_cl} \Delta \theta + \begin{bmatrix} \Theta_{d2} \\ \Theta_{q2} \end{bmatrix} (G_{PLL_cl})^2 (\Delta \theta)^2$

Compete model of PLL-synchronized grid converter (second-order):

Accuracy	Problem	Grid condition	Modeling type
Α	Transient stability	Weak grid with large phase pertutbation	Impedance-based model with higher-order PLL terms
В	Harmonic stability using small-signal analysis	Weak grid (SCR < 3)	Impedance-based model with first-order PLL terms
С		Strong grid (SCR > 10)	Impedance-based model
D	Linear analysis	Strong grid (SCR > 10)	Current source model
Е	Scheduling and optimization	Stiff grid	Phasorial model

Model Evaluation: Time-domain Responses

- When the phase perturbation is small, the small-signal model (first-order) is able to represent the system behavior and be used for stability analysis
- When the phase perturbation is large, i.e., out of confidence region, the second-order model has to be used for the analysis

Z. Zou, R. Rosso and M. Liserre, "Modeling of the Phase Detector of a Synchronous-Reference-Frame Phase-Locked Loop based on Second-Order Approximation," *IEEE Journal of Emerging and Selected Topics in Power Electronics*, vol. 8, no. 3, pp. 2534-2545, Sept. 2020.

南京 四牌楼2号 http://ee.seu.edu.cn

Stability Analysis with Different Models

Impacts of SRF-PLL

- Nyquist plot of the second eigenvalue (λ_2) is determined by the PLL bandwidth;
- In case of high PLL bandwitdh, the system is less likely to be stable, the dominant poles of the qq-axis closed-loop system move towards right-half plane.

Z. Zou, M. Liserre, Z. Wang and M. Cheng, "Modeling and Stability Analysis of a Smart Transformer-Fed Grid," IEEE Access, vol. 8, pp. 91876-91885, 2020. 東南大空電氣工程空院 南京四牌楼2号 http://ee.seu.edu.cn

Stabilization Approach

Z. Zou, M. Liserre, Z. Wang and M. Cheng, "Modeling and Stability Analysis of a Smart Transformer-Fed Grid," IEEE Access, vol. 8, pp. 91876-91885, 2020.

東南大學電氣工程學院

南京 四牌楼2号 http://ee.seu.edu.cn

Experimental Results

Unstable Stable PCC voltage (100 V/div) **Jump from low** bandwidth to a higher one: Unstable PCC voltage (100 V/div) **Unstable case** Virtual resistor off 2.00 Y 100k5/s 100k poir 1.00MS/s 100k points (100 V 100 V 2.00 V 10.0ms PCC voltage (100 V/div) **Before & after** the plug-in of virtual resistor: Stable PCC voltage (100 V/div) Virtual resistor on **Stable case** 100k5/s 100k points 1.00MS/s 2.00 V 1100ms 🛥 J 1.44 V 🔳 100 V 4 2.00 V][10.0ms 🖪 J 🛛 1.44 V 2.00 V

Z. Zou, M. Liserre, Z. Wang and M. Cheng, "Modeling and Stability Analysis of a Smart Transformer-Fed Grid," IEEE Access, vol. 8, pp. 91876-91885, 2020. 東南大學電氣工程學院

IOOL OF ELECTRICAL ENGINEERING, SEU 💳

南京 四牌楼2号 http://ee.seu.edu.cn

Conclusions

南京 四牌楼2号 http://ee.seu.edu.cn

- Smart transformer can provide better controbility of modern power system, but it has local control challenges as well;
- The ST LV converter can use filter-based active damping to stabilize the LV grid caused by filter resonances; the system robustness can be further improved by employing online resonance identification;
- High bandwidth SRF-PLL can incur instability of a ST-fed grid, while the system can be stabilized by using virtual resistor in q-axis of voltage control of ST LV converter.

Thank you for the attentions!

南京 四牌楼2号 http://ee.seu.edu.cn

